
The 7 Deadly Sins of
Almost Being Agile

Bob Hartman
Richard Lawrence

Presentation Copyright © 2009, Agile For All, LLC. and Humanizing Work. All rights reserved.

www.agilecooperative.com

Logistics

• Please turn cell phones, pagers, PDA’s, etc to
the “stun yourself” setting (rather than the
“annoy everyone else” setting)

• We will take a 30 minute break after 1.5 hours

• Please ask questions when they come up
rather than waiting

• Be prepared to participate! This presentation
requires a lot of work on your part.

About us…

www.agilecooperative.com

About us…

About you…

About this
session…

Our Fictional Team

Sally the Project Manager

Bill the Business Analyst

Tom the Product Manager

4 Developers

2 Testers

The First Agile Project

6 months

Expected 25 features

Delivered 10 features

3 “most important” cut

Prior release 72 defects

Agile release 70 defects

Customers unhappy

The Second Agile Project

6 months

Expected 25 features

Delivered 8 features

5 “most important” cut

Prior release 70 defects

This release 79 defects

Customers VERY unhappy

Fixing the W-Agilists

Enter Cindi, director of the company PMO

The Thinking Process

Example cloud from Clarke Ching

DEADLY SIN #1 - Lack of Meaningful
Feedback Loops

• We are too busy to stop working!

• Daily stand-ups are useless, let’s just use a
single weekly status meeting.

• When we ask people for feedback they don’t
show up or don’t participate anyway.

• We aren’t really sure why we would want
feedback or how we would use it anyway.

PRACTICE Undesirable Effects

1. Building wrong
products

2. Building the
product wrong

3. No improvement

4. Lack of visibility

5. Lack of trust

6. Key people out of
the loop

What are some of the
undesirable effects the
W-Agilists would see
from the lack of
feedback loops in their
process?

Phrase to remember

DEADLY SIN #2 - No incremental
deliveries of software

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Not Started

Started

Needs Integration

Integrated

PRACTICE Causes

1. Not using iterations at
all

2. Building by architecture
instead of value

3. Can’t make stories small

4. We’ve always done it
that way

5. Takes time we don’t
have

6. Sometimes need to
integrate with other
teams that aren’t agile

What might be some of
the main causes of not
building software
iteratively (remember,
this is supposed to be
an agile team!)

Phrase to remember

Our story continues…

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Iteration 1 Iteration 2 Iteration 3

Not Started

In Progress

Completed

Looking deeper…

0

20

40

60

80

100

120

Day 1-3 Day 4-6 Day 7-10

Developer

Tester

DBA

DEADLY SIN #3 - Silo’d Teams

1. Deep domain knowledge
is best

2. Experts better than
generalists

3. Work will be evenly
distributed

4. Organizational
structure cannot be
changed

5. Optimizing specialties
optimizes the whole

What assumptions
cause many
organizations to
deliberately use silo’d
teams?

Phrase to remember

The
Evaporating Cloud

A tool for articulating and
breaking conflicts.

Photo by ngould on sxc.hu

Photo by ngould on sxc.hu

resistance
to change?

Photo by ngould on sxc.hu

malice?
incompetence?

Photo by ngould on sxc.hu

CONFLICT

Do X. Don’t do X.

Spend our

money on Y.

Spend our

money on Z.

Do X.

Don’t do X.

Do pair
programming.

Don’t do pair
programming.

Do pair
programming.

Don’t do pair
programming.

Avoid
introducing

defects.

Maximize
productivity.

Do pair
programming.

Don’t do pair
programming.

Avoid
introducing

defects.

Maximize
productivity.

Deliver fast.

Do pair
programming.

Don’t do pair
programming.

Avoid
introducing

defects.

Maximize
productivity.

Deliver fast.

PREREQUISITE #1

PREREQUISITE #2

REQUIREMENT #1

REQUIREMENT #2

OBJECTIVE

Do pair
programming.

Don’t do pair
programming.

Avoid
introducing

defects.

Maximize
productivity.

Deliver fast.

PREREQUISITE #1

PREREQUISITE #2

REQUIREMENT #1

REQUIREMENT #2

OBJECTIVE

P1R1: In order to avoid introducing defects,
we must do pair programming because…

•

•

•

•

•

Do pair
programming.

Don’t do pair
programming.

Avoid
introducing

defects.

Maximize
productivity.

Deliver fast.

PREREQUISITE #1

PREREQUISITE #2

REQUIREMENT #1

REQUIREMENT #2

OBJECTIVE

P1R1: In order to avoid introducing defects,
we must do pair programming because…

• Pair programming helps avoid introducing
defects.
•

•

•

•

Do pair
programming.

Don’t do pair
programming.

Avoid
introducing

defects.

Maximize
productivity.

Deliver fast.

PREREQUISITE #1

PREREQUISITE #2

REQUIREMENT #1

REQUIREMENT #2

OBJECTIVE

P1R1: In order to avoid introducing defects,
we must do pair programming because…

• Pair programming helps is the ONLY way to
avoid introducing defects.
•

•

•

•

Do pair
programming.

Don’t do pair
programming.

Avoid
introducing

defects.

Maximize
productivity.

Deliver fast.

PREREQUISITE #1

PREREQUISITE #2

REQUIREMENT #1

REQUIREMENT #2

OBJECTIVE

P1R1: In order to avoid introducing defects,
we must do pair programming because…

• Pair programming helps is the ONLY way to
avoid introducing defects.
• Pair programming is better at avoiding defects
than any other technique we know.
• Pair programming does other
good things for us.
•

•

Do pair
programming.

Don’t do pair
programming.

Avoid
introducing

defects.

Maximize
productivity.

Deliver fast.

PREREQUISITE #1

PREREQUISITE #2

REQUIREMENT #1

REQUIREMENT #2

OBJECTIVE

P2R2: In order to maximize productivity,
we must not do pair programming because…

• Pair programming ALWAYS reduces
productivity.
• etc.
•

•

•

Earn moneyEat

Assumptions:
•Buying food with money is the ONLY way to eat.
•The ONLY way to get money is to earn it.

How else could we eat without earning money?

Do pair
programming.

Don’t do pair
programming.

Avoid
introducing

defects.

Maximize
productivity.

Deliver fast.

PREREQUISITE #1

PREREQUISITE #2

REQUIREMENT #1

REQUIREMENT #2

OBJECTIVE

How else could we avoid introducing defects
without doing pair programming?

How else could we maximize productivity
and do pair programming?

How could we do
and not do pair
programming?

Back to Our Fictional Team

Digging deeper in an iteration…

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Day 1-3 Day 4-6 Day 7-10

Not Started

In Progress

Completed

DEADLY SIN #4 - Too much work in
process

Work on one thing at
a time

vs.

Work on many things

in parallel.

Using the evaporating
cloud from the Thinking
Process, let’s solve this
conflict together.

Work on one
thing at a

time.

Work on
many things
in parallel.

Ensure we
deliver max

value.

Get
everything

done.

Make
stakeholder

happy.

PREREQUISITE #1

PREREQUISITE #2

REQUIREMENT #1

REQUIREMENT #2

OBJECTIVE

Phrase to remember

Presenting an
Evaporating Cloud

Do pair
programming.

Don’t do pair
programming.

Avoid
introducing

defects.

Maximize
productivity.

Deliver fast.

PREREQUISITE #1

PREREQUISITE #2

REQUIREMENT #1

REQUIREMENT #2

OBJECTIVE

First, build the whole cloud
Assumptions:
• Lorem ipsum dolor sit amet, consectetur adipiscing elit.
• Integer id libero vitae dolor ornare condimentum pellentesque ut mauris.
• Duis iaculis metus ut arcu tempor lobortis.
• Integer interdum pellentesque orci, sit amet sollicitudin lectus vehicula nec.

Assumptions:
• Nunc elementum est a nunc luctus
euismod.

Assumptions:
• Aenean vehicula lacinia lacus, sed hendrerit erat imperdiet quis.
• Fusce at tortor in orci convallis porttitor sit amet non magna.
• Aenean sit amet lacus nec justo consequat auctor.

Assumptions:
• Duis pulvinar orci at eros pharetra at cursus
nulla ultrices.
• Pellentesque et eros at quam porttitor tempus
id et leo.

Assumptions:
• Aliquam vitae sem id metus
imperdiet commodo non nec arcu.

INJECTION #1

INJECTION #2

INJECTION #3

Do pair
programming.

Don’t do pair
programming.

Avoid
introducing

defects.

Maximize
productivity.

Deliver fast.

PREREQUISITE #1

PREREQUISITE #2

REQUIREMENT #1

REQUIREMENT #2

OBJECTIVE

Then, redo the assumptions and
injections together

Assumptions:
•

•

•

•

Assumptions:
•

•

Assumptions:
•

•

•

•

Assumptions:
•

•

•

Assumptions:
•

•

•

DEADLY SIN #5 - Lack of customer
voice

Discuss

What are the

effects of lack

of customer

voice?

PRACTICE Lack of customer voice

Engage the customer

vs.

Don’t engage the
customer

Create an evaporating
cloud in your group

Phrase to remember

DEADLY SIN #6 - Unrealistic
deadlines

Discuss

What are the

effects of lack

of unrealistic

deadlines?

Phrase to remember

DEADLY SIN #7 - Manual testing
taking too long

Sprint 1 Sprint 2 Sprint 3 Sprint 4

New
feature
testing

Sprint 5

Testing that
doesn’t happen,

but shouldRegression
testing

Testing
capacity

Automate and get regression
tests for (nearly) free .

Sprint 1 Sprint 2 Sprint 3 Sprint 4

New
feature
testing

Sprint 5

Automated tests
that are now

regression tests

Testing
capacity

Phrase to remember

PRACTICE Unrealistic Deadlines OR
Adopting Automated Testing

Adopt automated
testing vs. Don’t
adopt…

or

Say “yes” to all
customer demands vs.
Say “no” to some…

Create an evaporating
cloud in your group.

Recap of the 7 Deadly Sins

1. Missing feedback loops

2. Not building in iterations – large scale
integrations

3. Silo’d teams

4. Too much work-in-progress (WIP)

5. Lack of customer voice

6. Unrealistic deadlines

7. Over-reliance on manual testing

Questions?

www.richardlawrence.info

richard@humanizingwork.com

303-895-7688

www.agilebob.com

bob.hartman@agileforall.com

303-766-0917

